Application of artificial neural networks in optimizing the fatty alcohol concentration in the formulation of an O/W emulsion.
نویسندگان
چکیده
The purpose of this study was to optimize the concentration of a fatty alcohol, in addition to internal phase, for formulating a stable O/W emulsion, by using artificial neural networks (ANNs). Predictions from ANNs are accurate and allow quantification of the relative importance of the inputs. Furthermore, by varying the network topology and parameters it was possible to obtain output values that were close to experimental values. The ANN model's predictive results and the actual output values were compared. R(2) values depict the percentage of response variability for the model; R(2) value of 0.84 for the model suggested adequate modeling, which is supported by the correlation coefficient value of 0.9445.
منابع مشابه
Optimizing plant traits to increase yield quality and quantity in tobacco using artificial neural network
There are complex inter- and intra-relations between regressors (independent variables) andyield quantity (W) and quality (Q) in tobacco. For instance, nitrogen (N) increases W butdecreases Q; starch harms Q but soluble sugars promote it. The balance between (optimizationof) regressors is needed for simultaneous increase in W and Q components [higher potassium(K), medium nicotine and lower chlo...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملOptimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm
This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...
متن کاملArtificial neural network forecast application for fine particulate matter concentration using meteorological data
Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consi...
متن کاملApplication of Artificial Neural Network and Genetic Algorithm for Predicting three Important Parameters in Bakery Industries
Farinograph is the most frequently used equipment for empirical rheological measurements of dough. It’suseful to illustrate quality of flour, behavior of dough during mechanical handling and texturalcharacteristics of finished products. The percentage of water absorption and the development time of doughare the most important parameters of farinography for bakery industries during production. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta pharmaceutica
دوره 61 2 شماره
صفحات -
تاریخ انتشار 2011